NAG C Library Function Document # nag partial corr (g02byc) ## 1 Purpose nag_partial_corr (g02byc) computes a partial correlation/variance-covariance matrix from a correlation or variance-covariance matrix computed by nag corr cov (g02bxc). ## 2 Specification # 3 Description Partial correlation can be used to explore the association between pairs of random variables in the presence of other variables. For three variables, y_1 , y_2 and x_3 the partial correlation coefficient between y_1 and y_2 given x_3 is computed as: $$\frac{r_{12} - r_{13}r_{23}}{\sqrt{(1 - r_{13}^2)(1 - r_{23}^2)}},$$ where r_{ij} is the product-moment correlation coefficient between variables with subscripts i and j. The partial correlation coefficient is a measure of the linear association between y_1 and y_2 having eliminated the effect due to both y_1 and y_2 being linearly associated with x_3 . That is, it is a measure of association between y_1 and y_2 conditional upon fixed values of x_3 . Like the full correlation coefficients the partial correlation coefficient takes a value in the range (-1,1) with the value 0 indicating no association. In general, let a set of variables be partitioned into two groups Y and X with n_y variables in Y and n_x variables in X and let the variance-covariance matrix of all $n_y + n_x$ variables be partitioned into, $$\begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}$$ The variance-covariance of Y conditional on fixed values of the X variables is given by: $$\Sigma_{y|x} = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$$ The partial correlation matrix is then computed by standardising $\Sigma_{y|x}$, $$\operatorname{diag}(\Sigma_{y|x})^{-\frac{1}{2}}\Sigma_{y|x}\operatorname{diag}(\Sigma_{y|x})^{-\frac{1}{2}}.$$ To test the hypothesis that a partial correlation is zero under the assumption that the data has an approximately Normal distribution a test similar to the test for the full correlation coefficient can be used. If r is the computed partial correlation coefficient then the appropriate t statistic is $$r\sqrt{\frac{n-n_x-2}{1-r^2}}$$ which has approximately a Student's t-distribution with $n - n_x - 2$ degrees of freedom, where n is the number of observations from which the full correlation coefficients were computed. [NP3491/6] g02byc.1 #### 4 Parameters 1: \mathbf{m} - Integer Input On entry: the number of variables in the variance-covariance/correlation matrix given in r. Constraint: $\mathbf{m} \geq 3$. 2: **ny** – Integer Input On entry: the number of Y variables, n_y , for which partial correlation coefficients are to be computed. Constraint: $\mathbf{ny} \geq 2$. 3: $\mathbf{n}\mathbf{x}$ - Integer Input On entry: the number of X variables, n_x , which are to be considered as fixed. Constraints: $\mathbf{n}\mathbf{x} > 1$, $ny + nx \le m$. 4: $\mathbf{sz}[\mathbf{m}]$ – const Integer Input On entry: indicates which variables belong to set X and Y. If $\mathbf{sz}(i) < 0$, then the *i*th variable is a Y variable, for $i = 1, 2, ..., \mathbf{m}$. If $\mathbf{sz}(i) > 0$, then the *i*th variable is a X variable. If $\mathbf{sz}(i) = 0$, then the *i*th variable is not included in the computations. Constraints: exactly **ny** elements of **sz** must be < 0, exactly $\mathbf{n}\mathbf{x}$ elements of $\mathbf{s}\mathbf{z}$ must be > 0. 5: $\mathbf{r}[\mathbf{m}][\mathbf{tdr}] - \text{const double}$ Input On entry: the variance-covariance or correlation matrix for the \mathbf{m} variables as given by nag_corr_cov (g02bxc). Only the upper triangle need be given. **Note:** the matrix must be a full rank variance-covariance or correlation matrix and so be positive-definite. This condition is not directly checked by the function. 6: **tdr** – Integer Input On entry: the second dimension of the array \mathbf{r} as declared in the function from which nag partial corr is called. Constraint: $tdr \ge m$. 7: p[ny][tdp] – double Output On exit: the strict upper triangle of \mathbf{p} contains the strict upper triangular part of the n_y by n_y partial correlation matrix. The lower triangle contains the lower triangle of the n_y by n_y partial variance-covariance matrix if the matrix given in \mathbf{r} is a variance-covariance matrix. If the matrix given in \mathbf{r} is a correlation matrix then the variance-covariance matrix is for standardised variables. 8: **tdp** – Integer Input On entry: the second dimension of the array \mathbf{p} as declared in the function from which nag partial corr is called. Constraint: $tdp \ge ny$. g02byc.2 [NP3491/6] ### 9: **fail** – NagError * Input/Output The NAG error parameter (see the Essential Introduction). # 5 Error Indicators and Warnings ## NE_INT_ARG_LT ``` On entry, m must not be less than 3: \mathbf{m} = \langle value \rangle. On entry, ny must not be less than 2: \mathbf{ny} = \langle value \rangle. On entry, nx must not be less than 1: \mathbf{nx} = \langle value \rangle. ``` # NE_3_INT_ARG_CONS ``` On entry, \mathbf{ny} = \langle value \rangle, \mathbf{nx} = \langle value \rangle and \mathbf{m} = \langle value \rangle. These parameters must satisfy \mathbf{ny} + \mathbf{nx} \leq \mathbf{m}. ``` ## NE 2 INT ARG LT ``` On entry, \mathbf{tdr} = \langle value \rangle while \mathbf{m} = \langle value \rangle. These parameters must satisfy \mathbf{tdr} \geq \mathbf{m}. On entry, \mathbf{tdp} = \langle value \rangle while \mathbf{ny} = \langle value \rangle. These parameters must satisfy \mathbf{tdp} \geq \mathbf{ny}. ``` # NE_BAD_NY_SET ``` On entry, \mathbf{ny} = \langle value \rangle and there are not exactly \mathbf{ny} values of \mathbf{isz} < 0. Number of values of \mathbf{isz} < 0 = \langle value \rangle. ``` ## NE BAD NX SET On entry, $\mathbf{n}\mathbf{x} = \langle value \rangle$ and there are not exactly $\mathbf{n}\mathbf{x}$ values of $\mathbf{i}\mathbf{s}\mathbf{z} < 0$. #### **NE ALLOC FAIL** Memory allocation failed. ## **NE INTERNAL ERROR** An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance. ### NE_COR_MAT_RANK On entry, either the variance-covariance matrix or the correlation matrix is not of full rank. Try removing some of the x variables by setting the appropriate elements of isz to zero. ## NE_COR_MAT_POSDEF Either a diagonal element of the partial variance-covariance matrix is zero and/or a computed partial correlation coefficient is greater than one. Both indicate that the matrix input in \mathbf{r} was not positive-definite. ## **6** Further Comments Models that represent the linear associations given by partial correlations can be fitted using the multiple regression function nag regsn mult linear (g02dac). ## 6.1 Accuracy nag_partial_corr computes the partial variance-covariance matrix, $\Sigma_{y|x}$, by computing the Cholesky factorization of Σ_{xx} . If Σ_{xx} is not of full rank the computation will fail. [NP3491/6] g02byc.3 #### 6.2 References Krzanowski W J (1990) *Principles of Multivariate Analysis* Oxford University Press Morrison D F (1967) *Multivariate Statistical Methods* McGraw-Hill Snedecor G W and Cochran W G (1967) *Statistical Methods* Iowa State University Press Osborn J F (1979) Statistical Exercises in Medical Research Blackwell #### 7 See Also ``` nag_corr_cov (g02bxc) nag_regsn_mult_linear (g02dac) ``` ## 8 Example Data, given by Osborn (1979), on the number of deaths, smoke (mg/m^3) and sulphur dioxide (parts/million) during an intense period of fog is input. The correlations are computed using nag_corr_cov (g02bxc) and the partial correlation between deaths and smoke given sulphur dioxide is computed using nag partial corr. ## 8.1 Program Text ``` /* nag_partial_corr (g02byc) Example Program. * Copyright 2000 Numerical Algorithms Group. * Mark 6, 2000. #include <stdio.h> #include <nag.h> #include <nag_stdlib.h> #include <nagg02.h> int main(void) double *r=0, *std=0, *v, *x=0, *xbar=0, sw; Integer *sz=0, j, k, m, n, nx, ny; Integer exit_status=0; NagError fail; #define X(I,J) \times [((I)-1)*m + ((J)-1)] #define R(I,J) r[((I)-1)*m + ((J)-1)] INIT_FAIL(fail); Vprintf("g02byc Example Program Results\n"); /* Skip heading in data file */ Vscanf("%*[^\n]"); Vscanf("%ld %ld", &n, &m); if (!(r=NAG_ALLOC(m*m, double)) || !(std=NAG_ALLOC(m, double)) || !(v=NAG_ALLOC(m*m, double)) || !(x=NAG_ALLOC(n*m, double)) || !(xbar=NAG_ALLOC(m, double)) ``` g02byc.4 [NP3491/6] ``` || !(sz=NAG_ALLOC(m, Integer))) Vprintf("Allocation failure\n"); exit_status = -1; goto END; for (j = 1; j \le n; ++j) for (k = 1; k \le m; ++k) Vscanf("%lf", &X(j,k)); /* Calculate correlation matrix */ g02bxc(n, m, x, m, 0, 0, &sw, xbar, std, r, m, v, m, &fail); if (fail.code == NE_NOERROR) { /* Print the correlation matrix */ Vprintf("\nCorrelation Matrix\n\n"); for (j=1; j \le m; j++) { for (k=1; k \le m; k++) if (j>k) Vprintf("%11s", ""); Vprintf("%7.4f%4s", R(j,k),""); Vprintf("\n"); } Vscanf("%ld %ld", &ny, &nx); for (j = 1; j \le m; ++j) Vscanf("%ld", &sz[j - 1]); /* Calculate partial correlation matrix */ g02byc(m, ny, nx, sz, v, m, r, m, &fail); if (fail.code != NE_NOERROR) { Vprintf("Error from g02byc.\n%s\n", fail.message); exit_status = 1; goto END; } /* Print partial correlation matrix */ Vprintf("\n"); Vprintf("\nPartial Correlation Matrix\n\n"); for (j=1; j \le ny; j++) for (k=1; k \le ny; k++) { if (j>k) Vprintf("%11s", ""); else if (j==k) Vprintf("%7.4f%4s", 1.0, ""); Vprintf("%7.4f%4s", R(j,k), ""); Vprintf("\n"); } else { ``` [NP3491/6] g02byc.5 ``` Vprintf("Error from g02bxc.\n%s\n", fail.message); exit_status = 1; goto END; } END: if (r) NAG_FREE(r); if (std) NAG_FREE(std); if (v) NAG_FREE(v); if (x) NAG_FREE(x); if (xbar) NAG_FREE(xbar); if (sz) NAG_FREE(sz); return exit_status; } ``` ## 8.2 Program Data ``` g02byc Example Program Data 112 0.30 0.09 140 0.49 0.16 143 0.61 0.22 120 0.49 0.14 196 2.64 0.75 294 3.45 0.86 513 4.46 1.34 518 4.46 1.34 430 1.22 0.47 274 1.22 0.47 255 0.32 0.22 236 0.29 0.23 256 0.50 0.26 222 0.32 0.16 213 0.32 0.16 2 1 -1 -1 1 ``` # 8.3 Program Results g02byc.6 (last) [NP3491/6]